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Abstract
We argue that a customary q-difference equation for the continuous q-
Hermite polynomials Hn(x|q) can be written in the factorized form as[(
Dq

x

)2 − 1
]
Hn(x|q) = (q−n − 1)Hn(x|q), where Dq

x is some explicitly known
q-difference operator. This means that the polynomials Hn(x|q) are in fact
governed by the q-difference equation Dq

xHn(x|q) = q−n/2Hn(x|q), which is
simpler than the conventional one. It is shown that a similar factorization holds
for the continuous q−1-Hermite polynomials hn(x|q).

PACS numbers: 02.30.Gp, 02.30.Tb, 03.65.Db

It is well known that the theory of q-Hermite polynomials is one of the main instruments
for studying q-oscillators and their applications (see, for example, [1, 2]). In particular, q-
difference equations for q-Hermite polynomials are known to be intimately connected with
Hamiltonians of the corresponding systems. These equations are direct consequences of the
eigenvalue problem for the corresponding invariant Casimir operators.

The continuous q-Hermite polynomials are also related to the oscillator representations
(a special case of the discrete series representations) of the quantum algebra suq(1, 1), which
are constructed with the aid of the creation and annihilation operators for the q-oscillator (see,
for example, [3]).

The aim of our paper is to study q-difference equations for the continuous q-Hermite
polynomials for both cases when 0 < q < 1 and q > 1. The continuous q-Hermite
polynomials for q > 1 are essentially different from those for 0 < q < 1. We derive
factorizations for q-difference equations for both of these sets of polynomials. In fact,
factorization for the continuous q-Hermite polynomials with 0 < q < 1 (see equation (8)
below) and with q > 1 (see (20)) means that the Casimir operator for q-oscillator algebra
and the Casimir operator for representations of the quantum algebra suq(1, 1), associated with
q-Hermite polynomials, admit dimidiation (that is, the determination of square root). There
is no such phenomenon in the cases of the standard quantum harmonic oscillator algebra and
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representations of the classical Lie algebra su(1, 1). It is well known that invariant Casimir
operators in the q-case can be written in different (non-equivalent) forms. However, it was not
known that Casimir operator admits evaluating its square root. Although a physical nature of
this phenomenon is not yet clear, it seems worth while to call attention to this problem here.

The continuous q-Hermite polynomials of Rogers, Hn(x|q), 0 < q < 1, are orthogonal
on the finite interval −1 � x := cos θ � 1,

1

2π

∫ 1

−1
Hm(x|q)Hn(x|q)w̃(x|q) dx = δmn

(qn+1; q)∞
, (1)

with respect to the weight function (we employ standard notations of the theory of special
functions, see, for example, [4] or [5])

w̃(x|q) := 1

sin θ
(e2iθ , e−2iθ ; q)∞. (2)

These polynomials satisfy the q-difference equation

Dq[w̃(x|q)DqHn(x|q)] = 4q(1 − q−n)

(1 − q)2
Hn(x|q)w̃(x|q), (3)

written in a self-adjoint form [6]. The Dq in (3) is the conventional notation for the Askey–
Wilson divided-difference operator defined as

Dqf (x) := δqf (x)

δqx
,

δqg(eiθ ) := g(q1/2 eiθ ) − g(q−1/2 eiθ ), f (x) ≡ g(eiθ ), x = cos θ.

(4)

In what follows we find it more convenient to employ the explicit expression

Dqf (x) =
√

q

i(1 − q)

1

sin θ

(
ei ln q1/2∂θ − e−i ln q1/2∂θ

)
f (x), ∂θ ≡ d

dθ
, (5)

for the Dq in terms of the shift operators (or the operators of the finite displacement, [7])
e±a∂θ g(θ) := g(θ ± a) with respect to the variable θ . Although it is customary to represent
q-difference equation for the q-Hermite polynomials in the self-adjoint form (3) (see [8,
p 115]), one may eliminate the weight function w̃(x|q) from (3) by utilizing its property that

exp
( ± i ln q1/2∂θ

)
w̃(x|q) = −e±2iθ

√
q

w̃(x|q). (6)

The validity of (6) is straightforward to verify upon using the explicit expression (2) for the
weight function w̃(x|q).

Thus, combining (3) and (6) results in the q-difference equation

1

2i sin θ

[
eiθ

1 − q e−2iθ
(ei ln q∂θ − 1) +

e−iθ

1 − q e2iθ
(1 − e−i ln q∂θ )

]
Hn(x|q) = (q−n − 1)Hn(x|q)

(7)

for the continuous q-Hermite polynomials Hn(x|q), which does not explicitly contain the
weight function w̃(x|q).

In connection with equation (7) it should be remarked that Koornwinder [9] has
recently studied in detail raising and lowering relations for the Askey–Wilson polynomials
pn(x; a, b, c, d|q). We recall that the Askey–Wilson family for a = b = c = d = 0 is known
to reduce to the continuous q-Hermite polynomials Hn(x|q). So, as a consistency check,
one may verify that (7) is in complete agreement with the particular case of the equation
Dpn = λnpn (i.e., equation (4.5) in [9]) for Askey–Wilson polynomials with vanishing
parameters a, b, c, d.
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We are now in a position to show that equation (7) admits a factorization. Indeed, with
the help of two simple trigonometric identities

e±iθ

2i sin θ
= ± 1

1 − e∓2iθ

one can represent the left side of (7) as

1

2i sin θ

(
eiθ

1 − q e−2iθ
ei ln q∂θ − e−iθ

1 − q e2iθ
e−i ln q∂θ − eiθ

1 − q e−2iθ
+

e−iθ

1 − q e2iθ

)
Hn(x|q)

=
[

1

1 − e−2iθ
ei ln q1/2∂θ

1

1 − e−2iθ
ei ln q1/2∂θ +

1

1 − e2iθ
e−i ln q1/2∂θ

1

1 − e2iθ
e−i ln q1/2∂θ

+
q(1 + q)

(1 + q)2 − 4qx2
− 1

]
Hn(x|q), x = cos θ.

The expression in square brackets factorizes into a product
(
Dq

x + 1
)(
Dq

x − 1
)

and the whole
equation (7) may be written as(

Dq
x

)2
Hn(x|q) = q−nHn(x|q), (8)

where the q-difference operator Dq
x is

Dq
x := 1

1 − e−2iθ
ei ln q1/2∂θ +

1

1 − e2iθ
e−i ln q1/2∂θ

≡ 1

2i sin θ

(
eiθ ei ln q1/2∂θ − e−iθ e−i ln q1/2∂θ

)
. (9)

To facilitate ease of clarifying the distinction between Dq
x and the Askey–Wilson divided-

difference operator Dq , defined by (4), one may also write (9) in the form

Dq
xf (x) = 1 − q

2
√

q

1

δqx

[
e−iθg(q1/2 eiθ ) − eiθg(q−1/2 eiθ )

]
= eiθg

(
q−1/2eiθ

) − e−iθg
(
q1/2eiθ

)
eiθ − e−iθ

, (10)

where g(eiθ ) ≡ f (x) and x = cos θ , as before.
For various applications it is important that the Dq and w̃−1(x|q)Dqw̃(x|q) are in

fact lowering and raising operators, respectively, for the continuous q-Hermite polynomials
Hn(x|q) (see, for example, [8, formulae (3.26.7) and (3.26.9)]). This circumstance enables
one to interpret a Hilbert space of functions on [−1, 1], which are square integrable with
respect to the weight w̃(x|q), as a direct sum of two suq(1, 1)-irreducible subspaces T +

1/4 and
T +

3/4, consisting of even and odd functions, respectively [3, 10]. So it becomes transparent how
the Askey–Wilson divided-difference operator Dq and the continuous q-Hermite polynomials
Hn(x|q) are interrelated from the group-theoretic point of view.

An explicit analytic relation between the Askey–Wilson divided-difference operator Dq

and the difference operator Dq
x , which surfaces in (8), involves the so-called averaging

difference operator Aq , defined as

(Aqf )(x) = 1
2

(
ei ln q1/2∂θ + e−i ln q1/2∂θ

)
f (x) ≡ cos

(
ln q1/2∂θ

)
f (x). (11)

We recall that the averaging operator Aq is intimately associated with the Askey–Wilson
operator Dq because the product rule for the latter one is of the form (see, for example,
formula (21.6.4) in [11])

Dqf (x)g(x) = Aqf (x)Dqg(x) + Dqf (x)Aqg(x).
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So, from (4), (9) and (11) one concludes that the Dq
x is may be expressed in terms of the known

operators Dq and Aq as

Dq
x = Aq +

1 − q

2
√

q
xDq. (12)

Note that the operator
(
Dq

x

)2
represents, as equation (8) implies, an unbounded operator on

the Hilbert space L2(−1, 1) with the scalar product

〈g1, g2〉 = 1

2π

∫ 1

−1
g1(x)g2(x)w̃(x|q) dx, (13)

where the weight function w̃(x|q) is defined by (2). In view of (1) the polynomials
pn(x) := (qn+1; q)

−1/2
∞ Hn(x|q), n = 0, 1, 2, . . . , constitute an orthonormal basis in this

space such that
(
Dq

x

)2
pn(x) = q−npn(x). In particular, the operator

(
Dq

x

)2
is defined on the

linear span H of the basis functions pn(x), which is everywhere dense in L2(−1, 1). We close(
Dq

x

)2
with respect to the scalar product (13). Since

(
Dq

x

)2
is diagonal with respect to the

orthonormal basis pn(x), n = 0, 1, 2, . . . , its closure
(
Dq

x

)2
is a self-adjoint operator which

coincides on H with
(
Dq

x

)2
. According to the theory of self-adjoint operators (see [12, chapter

6]), we can take a square root of the operator
(
Dq

x

)2
. This square root is a self-adjoint operator

too and has the same eigenfunctions as the operator
(
Dq

x

)2
does. We denote this operator by

Dq
x . It is evident that on the subspace H the operator Dq

x coincides with the Dq
x . That is, the Dq

x

is a well-defined operator on the Hilbert space L2(−1, 1) with an everywhere dense subspace
of definition. Moreover, according to the definition of a function of a self-adjoint operator
(see [12, chapter 6]), we have Dq

xpn(x) = q−n/2pn(x), that is

Dq
xHn(x|q) ≡

[
Aq +

1 − q

2
√

q
xDq

]
Hn(x|q) = q−n/2Hn(x|q). (14)

Thus, the continuous q-Hermite polynomials are in fact governed by a simpler q-difference
equation (14) which is, in essence, a factorized form of (8).

This is a place to point out that the first explicit statement of equation (14), that we know,
is in [13] and [14]: in the paper [13], it was stated without proof, whereas in [14] it was proved
by employing the Rogers generating function

∞∑
n=0

tn

(q; q)n
Hn(x|q) = (t eiθ , t e−iθ ; q)−1

∞ (15)

for the continuous q-Hermite polynomials Hn(x; q) (see [4, p 26]) as follows. Apply the
q-difference operator Dq

x to both sides of the generating function (15) to derive that
∞∑

n=0

tn

(q; q)n
Dq

xHn(x|q) = Dq
x (t eiθ , t e−iθ ; q)−1

∞

= (q−1/2t eiθ , q−1/2t e−iθ ; q)−1
∞ =

∞∑
n=0

tn

(q; q)n
q−n/2Hn(x|q).

Then equate coefficients of the same powers of t on the extremal sides above, to obtain the
proof that equation (14) is consistent with the generating function (15). However, it should be
noted that neither [13] nor [14] does contain any discussion of connection between q-difference
equations (14) and (3) or (7).
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In the limit as q → 1 the continuous q-Hermite polynomials Hn(x|q) are known to reduce
to the ordinary Hermite polynomials Hn(x) (see, for example, [8, p 144]),

lim
q→1

κ−nHn(κx|q) = Hn(x), κ :=
√

1 − q

2
. (16)

Hence, if one rescales x → κx and then lets q → 1 in q-difference equations (8) and (14),
both of these equations reduce to the same second-order differential equation(

∂2
x − 2x∂x + 2n

)
Hn(x) = 0, ∂x ≡ d

dx
,

for the ordinary Hermite polynomials Hn(x). This fact is an immediate consequence of the
limit property

lim
q→1

[
1

1 − q

(
Dq

κx − I
)] = 1

2

(
x − 1

2

d

dx

)
d

dx
(17)

of the q-difference operator Dq
x , which is straightforward checked by employing its definition

(9) or (10). Note that the rescaling parameter κ in (17) is the same as in (16), whereas I is the
identity operator.

Observe also that by combining (14) and (6) one arrives at the q-difference equation

D1/q
x Hn(x|q)w̃(x|q) = q−(n+1)/2Hn(x|q)w̃(x|q), (18)

which can be viewed as a factorized form of the conventional q-difference equation (3).
In the foregoing exposition up to the present point it has been implied that 0 < q < 1. Of

course, the case of q > 1 can be treated in a similar way. We briefly state below some explicit
formulae for the case of q > 1 too. As was noted by Askey [15], one should deal with the
case of the continuous q-Hermite polynomials Hn(x|q) of Rogers when q > 1 by introducing
a family of polynomials

hn(x|q) := i−nHn(ix|q−1), (19)

which are called the continuous q−1-Hermite polynomials [16]. So the transformation
q → q−1 and the change of variables θ = π/2 − iϕ in the q-difference equation (14)
converts it, on account of definition (19), into equation

D̃q
xhn(x|q) = qn/2hn(x|q), x = sinh ϕ, (20)

where the q-difference operator D̃q
x is of the form

D̃q
x := 1

2 cosh ϕ

(
eϕ eln q1/2∂ϕ + e−ϕ e− ln q1/2∂ϕ

)
. (21)

The advantage of a compact form of equation (20) becomes transparent upon comparing it with
difference equation (21.6.9) for the continuous q−1-Hermite polynomials hn(x|q) in [11]. It
should also be noted that q-difference equation (20) is consistent with the generating function

∞∑
n=0

qn(n−1)/2

(q; q)n
tnhn(sinh ϕ|q) = (t e−ϕ,−t eϕ; q)∞

for the continuous q−1-Hermite polynomials hn(x|q) [16].
The direct proof of (20) follows the same lines as the proof of (14) using the results

of the appendix of the paper [17]. Namely, an analogue of the q-difference equation (3) is
obtained from the raising and lowering operators (A.1) and (A.2) in [17]. Formula (A.10) in
[17] gives an analogue of relation (6). An analogue of the Hilbert space L2(−1, 1), associated
with 0 < q < 1, in this case is constructed in the following way. We take the Hilbert
space L2(R) with the scalar product determined by formula (3.2) in [15]. The polynomials
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hn(x), n = 0, 1, 2, . . . , are orthogonal in this Hilbert space. However, this set of polynomials
does not constitute a basis of L2(R) since the orthogonality measure in (3.2) of [15] is not
extremal for the continuous q−1-Hermite polynomials. For this reason, we create the closed
subspace L of L2(R) spanned by the polynomials hn(x), n = 0, 1, 2, . . . . It is shown in
the same way as above that

(
D̃q

x

)2
is a bounded self-adjoint operator on the Hilbert space L,

diagonalizable by the polynomials hn(x|q), n = 0, 1, 2, . . . . Therefore, relation (19) holds
for the operator D̃q

x .
In conclusion, this short paper should be considered as an attempt to call attention to

a curious fact that the conventional q-difference equation (7) for the continuous q-Hermite
polynomials Hn(x|q) of Rogers admits factorization of the form

[(
Dq

x

)2 − 1
]
Hn(x|q) =

(q−n − 1)Hn(x|q), where Dq
x is defined by (9). This circumstance seems to have escaped the

note of all those with whom we share interests in q-special functions.
Since the continuous q-Hermite polynomials Hn(x|q) occupy the lowest level in the

hierarchy of 4φ3 polynomials with positive orthogonality measures, it is of interest to find out
whether there are instances from higher levels in the Askey q-scheme [8], which also admit
factorization of an appropriate q-difference equation.

It is well known that the q-difference equation (3) is related to the Hamiltonian for the
q-oscillator [10]. So it would be of interest to look for some insight into equations (14), (18)
and (20) physically.

As mentioned at the beginning of the paper, factorizations of q-difference equations for
the continuous q-Hermite polynomials are related to the problem of an evaluating square root
of Casimir operators. So this phenomenon should be also studied on the algebraic level in
order to clarify its physical nature.

Finally, as was suggested by the referee, it will be of interest to employ the Darboux
transformation to equations (14) and (20) to find out what kind of non-classical q-orthogonal
polynomials are associated with them. In the limit when q → 1 these q-polynomials should
coincide with those, that appear upon applying the Darboux transformation to the stationary
one-dimensional Schrödinger operator [18].
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